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Abstract 

Let .A be the local ring at a curve singularity and let .Y be a ring such that 2 C Y C 2, 
where 2 denotes the integral closure of F# in its field of fractions. Let (2: 9) denote the 
conductor of .Y in 2. We compare here the dimensions (over the base field) of Y/J%? and &, 

We relate this with the intersection numbers of branches at the singularity. @ 1997 Elsevier 

Science B.V. 

1991 Math. S&j. Clu.~.: 14H05, 14H20, 14C17, 13HlO 

Let .9 be the local ring of a curve singularity and let 2’” be its field of fractions; 

i.e., ,X is the field of rational functions on the curve. Let .& denote the integral closure 

of d in the field d‘. For a ring Y with .% C Y & 82, we want to compare the following 

dimensions (dim means here dimension of vector spaces over the field of constants 

of N): 

where (2 : Y) = {CY E X 1 c( .Y C 3} is the conductor ideal of Y in B. 
When the ring 9? is Gorenstein (i.e., when dim(.&/B) = dim9/(9 : &)), we have 

that dim(.Y/&?) = dim.%/(g : 9) for any 9?-fractional idea1 Y containing g. In gen- 

eral, one has that dim(&/9) 2 dim92/(&? : %) (see [3] or [4]). We show that the 

inequality 
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holds whenever dimg/(.% : Y) < 4, and that it may fail when dim%?/(B : 9’) = 5. 

We also show (see Section 3) that this inequality (for certain rings 9”~) is equivalent 

to an inequality relating intersection numbers of branches at the singularity. This result 

was the motivation for investigating the relative dimensions of rings and conductors. 

We end up by giving examples of three-branch singularities where the inequality above 

fails. 

1. The main result 

Theorem 1. Let ,% and .Y he us uhove and suppose that dim&!/(.% : 9) 5 4. Then 

92 
dim- 

Y 
< dimz. 

9?:9- , 

Proof. It will be clear from the proof below that we do not need to assume that the 

ring g lives inside a function field .f and, moreover, we will just use that Y is stable 

under multiplication by elements of the ring .8. 

Fix H E { 1,2,3,4}. We show that if dim&?/(9 : ,Y) = n, then dim(,4P/.B) > n. The 

case n = 4 is the most complicated one and contains all arguments used in the other 

cases. We will then just consider the case n = 4. For an element Y E 9, we consider 

the linear map qr of vector spaces 

where Z means the equivalence class of c( in the (correspondent) quotient space. Note 

that (py $ 0 if and only if Y E (9\:#). 

We consider the following cases: 

Case 1: 3Y E (y\B) with (pr injective. 

Case 2: 3Y E (Y\W) with dim(Ker cpr) = 1. 

Case 3: VY E (9’\B), dim(Ker cpr) 2 2, and 3Yl E (9’\9) with dim(Ker cpy,) = 2. 

Case 4: ‘VY E (,4p\%), dim(Ker 4”~) = 3. 

Since dimB?/(B : 9) = 4, these are all the cases to be considered. Also, there is 

nothing to prove in Case 1. 

Case 2: Choose Yi E (cfi9?) with Ker cpr, unidimensional. Take X4 # 0 in Ker qr,. 

This means that X4 E 9, X4 $ (9 : 9) and X4 Y, E B. Since X4 4 (9 : Y), take 

Y, E Y with X4 Y4 cf 6%. 

Since dim(Im (pr, ) = 3, we just have to exhibit an element of (Y/B) not belonging 

to Im qr,. We claim that Y, E (y/9’) is such an element. In fact, suppose 74 = X . Yi 

for some X E 9; i.e., suppose (Y4 - X . Yi ) E .% for some X E 9. Multiplying by X4, 

we would get 

x4 . Y4 - x .x4 . Y, E 9. 

Since X4 Yi E 9, we would then conclude that X4 . Y4 E 3, a contradiction. 
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Case 3: Choose YI E (9\&?) with 

dim(Ker (py, ) = 2. 

Then, dim(Imqr, ) = 2 and we take Xl and X2 in 8 so that Xl Y, and X2 Y1 are 

linearly independent elements of (9’/9) (i.e., Xl Y, and X2 Y, form a basis for 

Im qy, ). Choose now XJ # 0 in Ker (py,. This means, as before, X4 E 9, X4 $ (9 : 9) 

and XJ . YI E 9. Since XJ $ (9 : Y), we can choose Y4 E 9 with X4 . Y4 $! .%. We 

consider two subcases. 

Case 3.1: There exists a choice of Y, ,X4 and Y4 as above such that 

Wr CPY, 1 n Wr CPY,> # (0). 

Cuse 3.2: For all such choices of Y,, X4 and Y4 we have 

(Ker VY, 1 n Wr CPY~ I= (0). 

In Case 3.1 we choose xs # 0 in the intersection (Ker cpr,) n (Ker (py,). As before, 

we can choose Yj E Y such that Xs . Ys 4 9. We claim that the elements Xl . YI, 
~ _ 
X2 Y,, Y3 and 74 of (Y/g) are linearly independent. In fact, suppose we have a 

linear equation (a; belonging to the constant field): 

alxl Yl + t12x2 . Y, + a3Y3 + r4Y4 E 2. 

Multiplying it by x3 and using X3 . Y1 E 9 and Xs . Y4 E 9, we get a3 = 0. Then, the 
linear equation is 

sc,x, . Y, + x2x2 Y, + a4Y4 E St. 

Multiplying it by X4 and using X4 . Y1 E .%, we obtain ~(4 = 0. We now conclude that 

~1 = 22 = 0, since Xl Y1 and X2 Y, are linearly independent in (Y/W). 

We then consider the situation in Case 3.2. We must have that dim(Ker cpr, ) = 2, 

since if it were equal to three we would have that (Ker qr,) n (Ker cpr,) # (0). This 

is so because the ambient vector space g/(8! : Y) is four-dimensional. Let {_%I,x2} 

be a basis for Ker cpr, and let {x3,x4} be a basis for Ker qr,. Then X1 ,X1,X3 

and x4 constitute a basis for g/(9? : 9) and, moreover, {XI Y,, X2 . Y,} is a basis 

for Im qr, and (X3 . Y4, X4 . Y4) is a basis for Im qr4. We claim that the elements 

XI . YI, X2 . Y,, X3 . YJ and X4 . Y4 of (9’19) are linearly independent. In fact, suppose 

we have a linear relation 

El-% . Yl + x2x2 . Y, + c(3x3 f Y, + xqx4 y, E 2. 

Multiplying it by Xl and using Xl . YJ E 9, we get 

x, (cc,& . Y, + 51*X2 . Y, ) E B. 

Similarly, multiplying it by X2, we get 

x, . (cx,X, . Y, + 12x2 . Y, ) E 9. 
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Let Y = (criXi . Yi + ~2x1 . Yi ) and consider the associated linear map ‘py. We have 

cpy(xi) = cpp(x,) = qop(x,) = (pq(X4) = 0. This means that ‘py E 0 or, equivalently, 

Y E 9. We then conclude that xi = (x2 = 0, since Xi I’, and X2 . Yl are linearly 

independent elements of (9’/.%). The linear relation then reduces to a&~.Y4+a&4. Y4 E 

9 and, similarly, we get CQ = x4 = 0. 

Case 4. Take Yi E (9\ S?) and let x4 # 0 be an element of Ker qr,. Choose 

Y4 E Y such that X4 . Y4 @ W. We have that 

dim [Wr YY, > n Wer YY,)] 2 2, 

since dim(Ker qr,) = 3, dim(Ker y,~,) = 3 and dim,%/(% : cW) = 4. We then see that 

dim [(Ker SPY, > n (Ker CPY, I] = 2, 

since X4 E Ker qr, and x4 $ Ker (pr, Let X2 # 0 be an element of (Ker (pr, ) n 

(Ker cpy,), and choose Y2 E ,Y such that X2 . Y2 @ 9. We have that 

W = (Ker YY,) n Wr YY, 1 n Wer YY,) # (01, 

since dim(Ker cpr,) = 3 and dim [(Ker qr,) n (Ker cpy,)] = 2. 

Take x3 # 0 in the intersection W above and choose Y3 E 9 such that X3 Y3 6 9. 
_-- 

We claim now that Yi, Y2, Y3 and y4 are linearly independent 

suppose we have a linear combination 

in (Y/9). In fact, 

Multiplying it by X3, we get x3 = 0. The linear combination then reduces to 

cc,Y, + a2Yz + a4Y4 E 2. 

Multiplying it now by X2, we get x2 = 0. The linear combination 

(al Yi + a4Y4) E 9. Multiplying it by X4, we get ~14 = 0 and then 

This concludes the proof of the theorem. 0 

then takes the form 

c(i = 0. 

Remark. The proof when dim.%/(.JA : .V) = 2 only involves Cases 1 and 2. The proof 

when dim&?/(,%? : 9) = 3 involves Cases 1, 2 and 3.1. 

2. The example with dim&?/(% : 9’) = 5 

By a numerical semigroup G we mean a subset G of the natural numbers with finite 

complement and stable under addition. The associated semigroup ring k[[G]] (k is the 

constant field) is the subring of the power series ring k[[t]] given below: 

NGII = E k[[t]] 1 aj = 0 if j @ G 
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Given two numerical semigroups G and H with G C H, we denote B? = k[[G]] and 

Y = k[[H]]. It is easy to check that 

dim: = ff(H\G) 

and 

(8 : 9) = E~luj=OifCj+H)$G 

Let {L, < /2 < . . . < L,} = (H\G). Then, 

dim.%/(&? : 9’) = #{a E G ( tx = (lj - di), for some 1 5 i < j < m}. 

In order to find an example satisfying dim(Y/g) < dimB?/(S? : Y), we will con- 

struct numerical semigroups G 2 H satisfying 

$(H\G) < #{ci E G / c( = (1”j - Li), for some 1 < i <j 5 Wz}. 

We are going to exhibit such G and H with the set at the left in the above inequality 

having 4 elements and the one at the right having 5 elements. 

Let G be the semigroup generated by the natural numbers 10,12,14,16,17,18,19 and 

21. Take now H = G U {tl,/~,t3,/4}, where et = 9, ez = 13, &s = 23 and f4 = 25. 

One easily checks that H is also a semigroup. We have #(H \ G) = 4 and, moreover, 

([I - rC1) = 0 E G; ([J - rC2) = 12 E G; (ti4 - [I) = 16 E G; (/3 - [I) = 10 E G and 

(F3 - L,) = 14 E G. 

The associated rings 

.S? = k[[P, t’2,t’4, P, tl’,P, P, P]] 

and 

Y = k[[P, t’O, t’2, t’j, t’4, t’b, t”]] 

then satisfy 

dim; = 4 
92 

and dim- = 
.% : 9 

5. 

Remark. This example is also good in the sense that one cannot find (monomial) 

semigroup rings .S? and Y with dim(Y/B!) = 3 and dim&?/(.% : Y) > 3. In fact, if 

such rings ,“R and Y existed and denoting as before {/I < (2 < /a} the complementary 

set (H \ G), we would have that O,(& - /I),([, - el) and (&3 - /2) would be four 

distinct elements of G. Consider then the element ({I + &s - /2), which belongs to H. 

We have el < (/I + /3 - e2) < /3 and, also, (/I + /3 - 82) # 82. Hence, we must 

have (/I + Pj - C2) E G. Now, since (Lz - at) belongs to G, we would have 

([I + d3 - f2) + (82 - &I > = d3 E G, 

a contradiction. 
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3. Intersection numbers of branches 

Here W will denote the completion of the local ring at a curve singularity. We denote 

.Y,,Yp, )...) Y,. the minimal prime ideals of 9; i.e., the branches of the curve at the 

singular point. If A is a subset of { 1,2,. . ,r}, we denote YA = njEA Yj. If A and B 

are two disjoint subsets of { 1,2,. . , Y} we denote 

the intersection number of the branches in A with those in B. For a three-set partition 

P={A,B,C}oftheset{1,2 ,..., r}, we put Yp = .&A x g)B x WC, where BA = %?/yA. 

Clearly, .% can be identified with the diagonal of cY~. 

Theorem 2. For a partition P = {A, B, C} of the set of branches at a curve singular- 

ity, the following assertions are equivalent: 

(1) dim(Yp/G?) 2 dimS?/(% : 9;). 

(2) *aA,B”C < yA,B + cyA,C. 

Proof. The proof is essentially contained in [ 1, Theorem 4.11. Clearly, the first assertion 

is equivalent to the following inequality: 

dim 
YP YP 

(g : cJp) 5 2. dlmT$ 

From [l, Proof of Theorem 3.91, we have 

YP 

dim(.% : Yp) 
= yA,BUC + ,fB.ALlC + cgC,AUB. 

Ordering the subsets as B, A, C, we have (from [2, Proposition 11) 

YP 
dim- = JJA,B + Yc,AUB. 

.%? 

(1) 

Ordering the subsets as C, A, B, we have (from [2, Proposition I]) 

dim- = yA,C + cBB,A”C, 
.@? 

So, 2.dim(Yp/%!) = ,a,,, + $A,C + .a~,~ Us f ~~B,AUC and hence the inequality (1) is 

also equivalent to the second assertion. El 

We consider now three-branch singularities (A = {l}, B = (2) and C = (3)). If the 

three branches are all non-singular, then we have that the ring Yp coincides with the 

integral closure of k% and, consequently, we have that the inequality below holds: 

41,{2,3} i 91,2 + 91.3. 

The example of the three axes in the three-dimensional space shows that the inequality 

can be strict, since we have in this case X,,I~,J) = .Y1,2 = JJ,,j = 1. We end up by 
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giving examples of three-branch singularities where 

cyl,{2.3} > ~91.2 + 9a,,3 

We write r = (Czjtj) for an element cc in the power series ring k[[t]]. We consider the 

linear subspace 3 of k[[t]] x k[[t]] x k[[t]] consisting of elements (CI, p, y) satisfying 

the following relations: 

,,+I = 0 and A+I = Y~+I, 

0 and lL = ynir, 

- Pn+r+l + Yn+r+l = 0, 

One can check that if s < (n + l), then 3 is actually a local ring with maximal 

ideal 4’ given below, 

.M = {(cc,fi,r) E 9 [ 20 = O}. 

The minimal prime ideal 9, (resp. 92 and 93) of the ring .%I? has as elements those 

elements in 9 having first (resp. second and third) coordinate equal to zero. Explicitly, 

9p1 = {(O,,Q) E k[[t]13 1 p s 0 modt”” and y = fi mod tn+r+s+‘}, 

92 = {(cI, 0,~)) E k[[t]13 1 M E 0 modt”+‘+’ and y E --c( modtnfr+sf’}, 

93 = {(r,p,O) E k[[t]13 1 x E 0 mod t”+‘+’ and p s CI modtn+ristl}. 

Clearly, 33 n 93 = {(LX, 0,O) E k[[t]13 ( CY = 0 mod tn+r+s+’ }. One can check that 

9, + 332 = 9, + 93 = A! 

and 

.Yt + 92 n 9’3 = {(cI, p, y) E W ] LX = 0 mod tn+r+s+‘} 

We then conclude that 3r,2 = .a,,3 = 1 and J,,{2,3) = (1 + s). 

Taking any 2 5 s 5 (n + l), we have that X1,12,3) > 91,2 + Y,,3 or, equivalently, 
we have that 

YP 9 
(s+r+2)=dim-- < dim(W:9,) =(2s+r+l). 

w 
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Similarly, one can also check that the other intersection numbers are given by 

92,3 = (Y + 1) and .a,,{,.,) = 43,(U) = (s + y + 1). 
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